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G ~'~1 = G2G3(G1 - E2 - E3) + ElM1 
G 4f21 = H1N, + GzN2 + G 3 N 3  - 201 

123 

4 W z = ~[(G1 + HON1 - 01] - HIHzH3 
123 

zI =G1GzG3Z(G1-2E1)+ ~_M2M3 
123 123 

= 
123 

Angles 
Angles between planes ~0 
Bragg angle 0 
Angles between wave-vectors gt 

= 2 sin ~'/2 

Physical parameters 

Wavelength in space 2c 
Wavelength in crystal 2 
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Tensor Analysis of the Harmonic Vibrations of Atoms in Crystals 
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It is shown how the tensor algebra of general affine systems gives a useful and natural representation 
of the harmonic vibration tensor U. Formulae given by Cruickshank for the 'smearing function' t(x) 
and its Fourier transform q(h) are proved to be generally valid, provided the upper and lower suffix 
notation is used for the vector and tensor components. It is also shown how representing the tensor 
U in a system whose basis vectors are unit vectors and parallel to the crystal axes has many advantages. 
Finally a simple formalism for the determination of metric quatities of U, introducing its mixed com- 
ponents Uj, is suggested. 

Introduction 

The purpose of the present note is to treat the problem 
of describing the thermal motion of atoms as one of 
tensor analysis in affine systems. 

Assuming an anisotropic harmonic potential field, 
the thermal motion of atoms in crystals is normally 
described for every atom in terms of the well-known 
symmetric tensor U (Cruicksb_ank, 1956). The crystallo- 
graphic system in which this tensor is defined is an 
affine system (i. e. a system whose axes and interaxial 
angles are in general a~ ¢ az ¢ a3, 71 ~ Y2 ~ Y3, ~'~-~ n/2). 

The problem of describing the thermal motion of 
atoms has therefore a more logical and natural for- 
mulation if for any general affine system a I we introduce 

its own reciprocal system a t defined by at.  a i=  ~ ,  and 
use these dual bases throughout the vector and tensor 
analysis of the thermal motion. 

Three main conclusions are reached: 

i) Cruickshank's (1956) original formulae (1.6) and 
(1.7) for the 'smearing function' t(x) and its Fourier 
transform q(h) are valid in any non-orthogonal 
crystal system provided contravariant components 
of U and covariant components of 1, with respect to 
crystal axes, axe used in formula (1-5) of the same 
paper; 

ii) it is useful to refer the tensor U to a coordinate 
system whose basis vectors are unit vectors parallel 
to the crystal axes, in order to give an expression 
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for tensor U, which is independent of the length of 
the crystal axes and therefore dependent only on the 
intermolecular and intramolecular forces acting on 
the atom; 

iii) it is especially convenient to use the mixed compo- 
nents UJ in the calculation of any metric quantity 
of the tensor U, e.g.  the length of the principal axes 
and their orientation with respect to the crystal axes, 
because the formalism in any affine system is then 
the same as for Cartesian tensors. 

The Fourier transform of (2) is 

q(h)=(2n)-3 /2  (det VIk)I/2SS ~ 

exp { - i 2 n h t x t - ½ V l k x i x t ' } d x  (4) 

in which h=(hb  h2, h 3 )  is a Fourier transform vector 
space. 

This is shown in the Appendix to reduce to 

q(h) = exp { -  2rczUtJhthj}. (5) 

The notation used in this note is similar to that in 
standard texts of tensor calculus [for example see Ger- 
resten (1962) or Patterson (1959)] except for the frames, 
for which the notation (a t, at), (b~, bt), (e t, e t) is pre- 
ferred, in order to denote explicitly in every case the 
vectors of the direct and reciprocal bases. The super- 
scripts and subscripts i, j, k, l, m, n = 1, 2, 3 are used to 
specify contravariant and covariant components, re- 
spectively. The subscript r denotes the serial number of 
any quantity. 

The expressions (2) and (5) are precisely the formulae 
given by Cruickshank for the 'smearing function' t(x) 
and the Fourier transform q(h) provided it is remem- 
bered he did not explicitly use the upper and lower suffix 
notation for contravariant and covariant components, 
so that his 'Ut[ must be interpreted as our U tj and his 
'x[  as x t. The components U tj in (5), which are the 
same as those used in (1), are the contravariant com- 
ponents of the tensor U in the frame (a t, a t) defined by 
direct and reciprocal axes. 

Validity of Crulckshank's formulae 

In a recent paper, Scheringer (1966) claims that 
Cruickshank's (1956) formulae (1.6) and (1.7) are not 
valid in an oblique crystal system. However it is pos- 
sible to prove, in a more explicit way than does 
Cruickshank, that they maintain their validity in the 
affine system defined by the crystal axes. 

In the frame (at, a t ) defined by the direct and recip- 
rocal crystal axes, the symmetric tensor U, which 
represents in a harmonic potential field the mean 
square amplitude of vibration of any atom, is described 
either by the contravariant components U ti or the 
covariant components Utj, so that the mean-square 
displacement u 2 from the equilibrium position, in the 
direction of a unit vector 1, is u z = UtJltlj = U~jlq 1, where 
l t and l t are the contravariant and covariant components 
of I respectively. 

Let us suppose that the tensor U is described, in the 
frame (at, a~), by the contravariant components* U tj, so 
that 

u2 = v"ttt  . (1 )  

It is then possible to show (Cram~r, 1961) that the 
probability density, i.e. Cruickshank's 'smearing 
function', in the direct crystal system is 

t(x) =(270-3/2 (det Vtj)'/2 exp { - ½ V t j x t x  j} (2) 

where x I are the contravariant components of the vector 
x and 

[vt,]=[v,q-1. (3) 

* The following demonstration may be carried out also for 
the covariant components U~j with similar results. 

The components of U in the new (et, el)reference frame 

As it is well known, the anisotropic temperature factor 
has the form e x p ( - M ) ,  where M =  BtJhthj, and hi are 
the covariant components of h, the coordinates of a 
reciprocal-lattice point. From experimental data, 
generally by least-squares refinement, we obtain the 
coefficients B ~/and the components 

U tl = BO/2z¢ 2 (6) 

Thus the tensor U in the frame (a t, a t) is described 
by contravariant components U tl defined by (6) and by 
covariant components defined by 

Utj = Uklektelj (7) 

where e is the metric tensor of the basis (at), whose 
components are etl = a t . a 1. 

Any metric quantity of the tensor U can then be 
determined either from the components U tj or the 
components U~j, provided the metric tensors 8tj = at.  al 
and etj = a  t " a t of the frame (at, a t) are taken into 
account (Busing & Levy, 1958). It is also well known 
that the components U tj (or Utj) defined in that frame 
do not have an immediate physical interpretation; nor 
are the several components directly comparable. 

It is physically more significant to refer the tensor 
U to a direct oblique system with unit vectors defined 
a s  

e,= ai/(a,) • 

No summation is implied hereafter by the indices of 
quantities in brackets. 

For the change from basis (ai) to basis (el), 

e, = t l a  ~ , 

A C 27A - 3* 
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the transformation matrix is 

[1/al 0 ] 
[t~]= [ 0 l/a20 l/a30 =[~l(at)]  

where ~{ is the Kronecker symbol. 
For the reciprocal basis, we have 

where 

e t = r~ a i 

[i°:] [r~]=[t/] -1= az =[fi~(aj)]. 
0 a3 

Clearly, the vectors e t defining the new direct basis 
are parallel to the crystal axes at, but are a t times 
shorter, so that levi = 1. Similarly, the vectors e t defining 
the new reciprocal basis are parallel to the reciprocal 
crystal axes a t, but a t times longer, so that leq = 1/cos 0~, 
where 0t are the angles between the direct and reci- 
procal axes. 

In this new frame (% e t) the Utj components are 
directly comparable and each diagonal term U. is the 
mean-square displacement (in A 2) in the direction of 
the direct axis % whilst the mean-square displacement 
in the direction of the reciprocal axis e ~ is U. (cos 0t) 2. 
Moreover the U tj components define the Vtj matrix, 
and therefore the probability-density function t(x) in a 
way that makes it possible to compare the thermal 
vibrations of an atom in different crystals. 

According to the transformation law, in the frame 
(% e t) the new components of U are 

and 

U t, = U~r~rl n 

U . = U,,,,, t T t '/ 

where U "~ and Um, are the contravariant and covariant 
component of U as defned in (a t, a0 by (5) and (6). 

Considering (6) and (8), for the new contravariant 
components of U, in (% e ~) more explicitly we get 

Ull = Bnalal/2rc2 
U22 = B22a2a2/2rc2 
U33 = B33a3a3/2~z2 

U12= B12alal/21z2 
U 13 =B13ala3/2rc2 
U23 = B23a2a3/2~z2. 

(10) 

Formulae (10) are equivalent to Scheringer's (1966) 
formula (5) which was derived assuming that Cruick- 
shank's equations (1.6) and (1.7) were valid in orthogo- 
nal axes only. In orthogonal axes, formulae (10) are 
also equivalent to Cruickshank's equation (2.2). 

For oblique crystal axes Hirshfeld & Rabinovich 
(1966) discuss the components of tensor U in a different 
affine system whose direct and reciprocal basis vectors 
are 

ft=et/(cos Or), fi=et(cos Or) i=1,2 ,3  

where 0t are the angles between the direct and reci- 
procal axis.* 

In this system I fq=l ,  and therefore the contra- 
variant components U lj are comparable and the dia- 
gonal term U u is the mean-square displacement (in A 2) 
in the direction of the reciprocal axis fl, whilst the 
mean-square displacement in the direction of the direct 
axis f~ is U,(cos 0t) 2. 

On the mixed components U} 

In a general affine system and therefore in the (e~, e t) 
frame too, the problem of finding the principal axes 
of the representation quadric of the symmetric tensor 
U, requires the solution of either of the following two 
systems 

Ut*lj=2l ' . i=  1, 2, 3 (11) 

U,jP=2I t i = 1 , 2 ,  3.  (12) 

In the frame (et, et), the following relationships hold 
between l t and It 

l t =g,klk ,  It =&klk i=  1, 2, 3 (13) 

where gtk = e t . e k and gtk = et • ek are the metric tensors 
of the frame. 

Taking into account (13) on the right hand side of 
(11) and (12) we get the following linear homogeneous 
systems for the covariant and contravariant components 
of U 

( U , -  2g,)P=O i=1 ,2 ,  3 

(U'l-2g")ll=O i=  1, 2, 3 

(8) whose characteristic equations would be quite cumber- 
some. 

However by substituting (13) in the left-hand side of 
(9) (11), we get 

(U],--2~,)lk=O i = 1 , 2 ,  3 (14) 

where Ut/= U"gjk are the mixed componentst of tensor 
U in the frame (e~, e t) and ~, is the Kronecker symbol. 

Similarly (12) becomes 

( U f -  2~f)lk=0 i=1 ,2 ,  3 (15) 

where Uk= Uijg jk is the transpose matrix of UkS.:~ 
The eigenvalues of the linear homogeneous system 

(14) and (15) can be easily found by solving the common 
characteristic equation: 

* We actually obtain Cruickshank's equation (2.2) if we 
perform a change of bases whose transformation matrices for 
the direct and reciprocal bases are respectively 

Is]] = [8](a0] and [v}] = [8}/(aO] 
where Ok is the Kronecker symbol. 

t For a symmetric tensor it is Utk = Uk t = U~. 
The matrices U~' and U~ are of course no longer symme- 

tric, even if they represent the symmetric tensor U. 
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+ ul + ul)+ 

tt 
- ( d e t  Uk)=0 .  (16) 

Formulae (14) or (15), and especially (16), offer 
computational advantages in determining the three 
eigenvalues 2r and the corresponding eigenvectors Vr 
because they have the same form as the corresponding 
equations in standard orthogonal systems. 

APPENDIX 

In order to calculate the Fourier transform (4), we 
change the frame from (al, a t) to (b i, b t) as follows 

b l=p~aj,  b t=q~d i = 1 , 2 , 3  

with [q~] = [p~]-1 where [p~] is a suitable transformation 
matrix, so chosen that the matrices [V~k ] and [U tk] are 
transformed into diagonal matrices 

Slj = V1,tp~pJ , T u = ,.,rrkt"t"JL,lk ut • (A1) 
. . . .  

~ -  . . . . . . . . . .  , : = ~ ; - ~  ,=. :  . . . .  ~ ..: . : ~ = T z - . .  ~ - -~  . . . . . .  , . , ,  = = ~ , - ~ , . ~ - g - ~ - - ~ 7 " ? ,  

The diagonal elements S.  and T t~ are the eigenvalues 
of the matrices V u and U", so that considering (3) we 
get 

[x00,0 ] ] [SI/]= $2 0 [TtI] = 1]$2 0 

L0 0 

The change of frame involves the following transfor- 
mations 

x' =p}yJ, h, =qlkj i=  1, 2, 3 (A2) 
and 

dx=(de t  p})dy 

where (det p~) is the coordinate change Jacobian. 
In the new frame (bl, b i) the triple integral in (4) be- 

comes 

(det p})SSSexp { - i 2 z c k j f 1 - ½ S / j y t } d y =  

= (det p~)//jSexp { -  i2zckjyJ-½Sjjyifl}dyi. 

Integrating the last formula we get 

(det p}) (2rc)3/2 (det Sjl)-l/2 exp {--2rc2S-jlkjkl}. (A3) 

But [SII]-I=[T jr] and (det Sn)=(det  V#) (det p~)2 so 
that (A3) becomes 

(2rc)3/2 (det V#)-I/2 exp {-2~2T#k?j}. 
If the inverse transformation from (b~, b0 to (at, a t) 

is performed, taking (A1) and the inverse* of (A2) into 
account, and substituting in (4), we get 

q(h) =exp {-2rc2U#hthj} 

which is the generalized formulation of q(h) in any 
crystal axes. 

A program based on this analysis has been written 
by the author in FORTRAN IV for the IBM 7040 
computer, valid in any crystal system for determining 
the components U # and U~ of tensor U in the frame 
(et, d) and the metric quantities of thermal vibration 
ellipsoids, such as the length of the principal axes, and 
their orientation with respect to the crystal axes. 
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